中文 | English |im电竞官网平台

im电竞官网平台
公司总机: 010-58851119
E-mail sales@zgsfjt.com
技术支援部: 010-58851119-813
E-mail support@zgsfjt.com
售后服务部: 010-58851119-816
E-mail customer@zgsfjt.com
办公室直线: 010-58851119
E-mail info@zgsfjt.com
公司地址:北京市海淀区上地东路1号盈创动力大厦E座202
首页 > 新闻中心 im电竞官网平台
im电竞官网平台·光纤通信系统的噪声产生的因素有哪些?

发布时间:2024-05-19 02:20:07 来源:im电竞官网 作者:IM电竞官网注册 点击次数:16次

  答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。造成衰减的主要原因是散射、吸收以及由于

  答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。

  答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。取决于光源、光纤两者的特性。

  答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。影响误码率的大小,和传输距离的长短,以及系统速率的大小。

  答:背向散射法是一种沿光纤长度上测量衰减的方法。光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。

  答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。其主要指标参数包括:动态范围、灵敏度、分辨率、测量时间和盲区等。

  答:通常将诸如活动连接器、机械接头等特征点产生反射引起的OTDR接收端饱和而带来的一系列“盲点”称为盲区。

  光纤中的盲区分为事件盲区和衰减盲区两种:由于介入活动连接器而引起反射峰,从反射峰的起始点到接收器饱和峰值之间的长度距离,被称为事件盲区;光纤中由于介入活动连接器引起反射峰,从反射峰的起始点到可识别其他事件点之间的距离,被称为衰减盲区。

  对于OTDR来说,盲区越小越好。盲区会随着脉冲展宽的宽度的增加而增大,增加脉冲宽度虽然增加了测量长度,但也增大了测量盲区,所以,在测试光纤时,对OTDR附件的光纤和相邻事件点的测量要使用窄脉冲,而对光纤远端进行测量时要使用宽脉冲。

  答:如果使用单模OTDR模块对多模光纤进行测量,或使用一个多模OTDR模块对诸如芯径为62.5mm的单模光纤进行测量,光纤长度的测量结果不会受到影响,但诸如光纤损耗、光接头损耗、回波损耗的结果是不正确的。所以,在测量光纤时,一定要选择与被测光纤相匹配的OTDR进行测量,这样才能得到各项性能指标均正确的结果。

  答:指的是光信号的波长。光纤通信使用的波长范围处于近红外区,波长在800nm~1700nm之间。常将其分为短波长波段和长波长波段,前者指850nm波长,后者指1310nm和1550nm。

  答:可分为阶跃光纤和渐变光纤。阶跃光纤带宽较窄,适用于小容量短距离通信;渐变光纤带宽较宽,适用于中、大容量通信。

  答:可分为单模光纤和多模光纤。单模光纤芯径约在1~10μm之间,在给定的工作波长上,只传输单一基模,适于大容量长距离通信系统。多模光纤能传输多个模式的光波,芯径约在50~60μm之间,传输性能比单模光纤差。

  在传送复用保护的电流差动保护时,安装在变电站通信机房的光电转换装置与安装在主控室的保护装置之间多用多模光纤。

  答:单模光纤中存在两个正交偏振模式,当光纤不完全园柱对称时,两个正交偏振模式并不是简并的,两个正交偏振的模折射率的差的绝对值即为双折射。

  答:是指在特殊用途的光缆中(如海底光缆等)所使用的保护元件(通常为钢丝或钢带)。铠装都附在光缆的内护套上。

  答:光缆护套或护层通常由聚乙烯(PE)和聚氯乙烯(PVC)材料构成,其作用是保护缆芯不受外界影响。

  答:以AA线(铝合金线) 和AS线材(铝包钢线.要选择OPGW光缆型号,应具备的技术条件有哪些?

  答:光纤连接器俗称活接头.对于单纤连接器光性能方面的要求,重点是在介入损耗和回波损耗这两个最基本的性能参数上。

  33.常用的光纤连接器有几类?答:按照不同的分类方法,光纤连接器可以分为不同的种类,按传输媒介的不同可分为单模光纤连接器和多模光纤连接器;按结构的不同可分为FC、SC、ST、D4、DIN、Bic

  AFC、FC 型适配器  ST型适配器  SC型适配器 FC/APC、FC/PC型连接器    SC型连接器  ST型连接器 LC型跳线  MU型跳线  单模或多模跳线.什么是光纤连接器的介入损耗(或称插入损耗)?

  答:是指因连接器的介入而引起传输线路有效功率减小的量值,对于用户来说,该值越小越好。ITU-T规定其值应不大于0.5dB。

  答:是衡量从连接器反射回来并沿输入通道返回的输入功率分量的一个量度,其典型值应不小于25dB。

  LED)和半导体激光器(LD)的工作特性最明显的不同是什么?答:LED没有阈值,LD则存在阈值,只有注入电流超过阈值后才会产生激光。

  答:DFB激光器和DBR激光器,二者均为分布反馈激光器,其光反馈是由光腔内的分布反馈布拉格光栅提供的。40.光接收器件主要有哪两种?

  答:有由于消光比不合格产生的噪声,光强度随机变化的噪声,时间抖动引起的噪声,接收机的点噪声和热噪声,光纤的模式噪声,色散导致的脉冲展宽产生的噪声,LD的模分配噪声,LD的频率啁啾产生的噪声以及反射产生的噪声。

  答:主要有三种,即G.652常规单模光纤、G.653色散位移单模光纤和G.655非零色散位移光纤。

  G.652单模光纤在C波段1530~1565nm和L波段1565~1625nm的色散较大,一般为17~22psnm•km,系统速率达到2.5Gbit/s以上时,需要进行色散补偿,在10Gbit/s时系统色散补偿成本较大,它是目前传输网中敷设最为普遍的一种光纤。

  G.653色散位移光纤在C波段和L波段的色散一般为-1~3.5psnm•km,在1550nm是零色散,系统速率可达到20Gbit/s和40Gbit/s,是单波长超长距离传输的最佳光纤。但是,由于其零色散的特性,在采用DWDM扩容时,会出现非线性效应,导致信号串扰,产生四波混频FWM,因此不适合采用DWDM。

  G.655非零色散位移光纤:G.655非零色散位移光纤在C波段的色散为1~6psnm•km,在L波段的色散一般为6~10psnm•km,色散较小,避开了零色散区,既抑制了四波混频FWM,可用于DWDM扩容,也可以开通高速系统。新型的G.655光纤可以使有效面积扩大到一般光纤的1.5~2倍,大有效面积可以降低功率密度,减少光纤的非线.什么是光纤的非线性?

  当光从光纤的一端射入,从另一端射出时,光的强度会减弱。这意味着光信号通过光纤传播后,光能量衰减了一部分。这说明光纤中有某些物质或因某种原因,阻挡光信号通过。这就是光纤的传输损耗。只有降低光纤损耗,才能使光信号畅通无阻。

  其中,附加损耗是在光纤的铺设过程中人为造成的。在实际应用中,不可避免地要将光纤一根接一根地接起来,光纤连接会产生损耗。光纤微小弯曲、挤压、拉伸受力也会引起损耗。这些都是光纤使用条件引起的损耗。究其主要原因是在这些条件下,光纤纤芯中的传输模式发生了变化。附加损耗是可以尽量避免的。下面,我们只讨论光纤的固有损耗。

  石英玻璃中电子跃迁产生的吸收峰在紫外区的0.1~0.2μm波长左右。随着波长增大,其吸收作用逐渐减小,但影响区域很宽,直到1μm以上的波长。不过,紫外吸收对在红外区工作的石英光纤的影响不大。例如,在0.6μm波长的可见光区,紫外吸收可达1dB/km,在0.8μm波长时降到0.2~0.3dB/km,而在1.2μm波长时,大约只有0.ldB/km。

  通过研究,还发现石英玻璃中有一些破坏分子在捣乱,主要是一些有害过渡金属杂质,如铜、铁、铬、锰等。这些坏蛋在光照射下,贪婪地吸收光能,乱蹦乱跳,造成了光能的损失。清除捣乱分子,对制造光纤的材料进行格的化学提纯,就可以大大降低损耗。

  石英光纤中的另一个吸收源是氢氧根(OHˉ) 期的研究,人们发现氢氧根在光纤工作波段上有三个吸收峰,它们分别是0.95μm、1.24μm和1.38μm,其中1.38μm波长的吸收损耗最为严重,对光纤的影响也最大。在1.38μm波长,含量仅占0.0001的氢氧根产生的吸收峰损耗就高达33dB/km。

  这些氢氧根是从哪里来的呢?氢氧根的来源很多,一是制造光纤的材料中有水分和氢氧化合物,这些氢氧化合物在原料提纯过程中不易被清除掉,最后仍以氢氧根的形式残留在光纤中;二是制造光纤的氢氧物中含有少量的水分;三是光纤的制造过程中因化学反应而生成了水;四是外界空气的进入带来了水蒸气。然而,现在的制造工艺已经发展到了相当高的水平,氢氧根的含量已经降到了足够低的程度,它对光纤的影响可以忽略不计了。

  散射是怎样产生的呢?原来组成物质的分子、原子、电子等微小粒子是以某些固有频率进行振动的,并能释放出波长与该振动频率相应的光。粒子的振动频率由粒子的大小来决定。粒子越大,振动频率越低,释放出的光的波长越长;粒子越小,振动频率越高,释放出的光的波长越短。这种振动频率称做粒子的固有振动频率。但是这种振动并不是自行产生,它需要一定的能量。一旦粒子受到具有一定波长的光照射,而照射光的频率与该粒子固有振动频率相同,就会引起共振。粒子内的电子便以该振动频率开始振动,结果是该粒子向四面八方散射出光,入射光的能量被吸收而转化为粒子的能量,粒子又将能量重新以光能的形式射出去。因此,对于在外部观察的人来说,看到的好像是光撞到粒子以后,向四面八方飞散出去了。

  光纤内也有瑞利散射,由此而产生的光损耗就称为瑞利散射损耗。鉴于目前的光纤制造工艺水平,可以说瑞利散射损耗是无法避免的。但是,由于瑞利散射损耗的大小与光波长的4次方成反比,所以光纤工作在长波长区时,瑞利散射损耗的影响可以大大减小。

  光纤结构不完善,如由光纤中有气泡、杂质,或者粗细不均匀,特别是芯-包层交界面不平滑等,光线传到这些地方时,就会有一部分光散射到各个方。


im电竞官网平台